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A computationally efficient approach to extrapolating a data field with second order accu-
racy is presented. This is achieved through the sequential solution of non-homogeneous 
linear static Hamilton–Jacobi equations, which can be performed rapidly using the fast 
marching methodology. In particular, the method relies on a fast marching calculation of 
the distance from the manifold Γ that separates the subdomain Ωin over which the quan-
ity is known from the subdomain Ωout over which the quantity is to be extrapolated. 
A parallel algorithm is included and discussed in the appendices. Results are compared to 
the multidimensional partial differential equation (PDE) extrapolation approach of Aslam 
(Aslam (2004) [31]). It is shown that the rate of convergence of the extrapolation within 
a narrow band near Γ is controlled by both the number of successive extrapolations 
performed and the order of accuracy of the spatial discretization. For m successive extrap-
olating steps and a spatial discretization scheme of order N , the rate of convergence in 
a narrow band is shown to be min(N + 1, m + 1). Results show that for a wide range of 
error levels, the fast marching extrapolation strategy leads to dramatic improvements in 
computational cost when compared to the PDE approach.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many applications of computational science and engineering involve extrapolating data located in a subregion of a com-
putational space to the rest of the simulation domain. This is especially pertinent to the propagation of discontinuous 
fronts, which is a significant component of phenomena such as multiphase flows [1–10], supersonic flows [11], reacting 
flows [12–14], multiphase electrohydrodynamics [15,16], crack propagation [17,18], and image processing [19–21]. Calcula-
tions involving discontinuous fronts often suffer from numerical artifacts such as nonphysical oscillations and low orders of 
convergence [22,23], unless relevant quantities are extrapolated or extended across the front in order to avoid differentiat-
ing across discontinuities. A typical way of achieving this is by performing a constant extrapolation through the solution of 
a Hamilton–Jacobi type equation, as is the case in the original ghost fluid method [22,24,25] and a variety of other level set 
applications [1,26,2]. Another approach that circumvents Courant–Friedrichs–Lewy (CFL) limitations of a partial differential 
equation (PDE) extrapolation is the fast marching method (FMM), developed by Sethian [27] and Adalsteinsson and Sethian 
[28] for the solution of static Hamilton–Jacobi equations in the context of level set methods [29]. Constant FMM extrap-
olation has been recently employed to improve the accuracy of the conservative level set method [9]. The fast marching 
approach is proven to be much faster than a PDE approach, but Aslam [30] has argued that it would suffer from lower 
accuracy and a reduced rate of convergence under mesh refinement in some instances.
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Fig. 1. Schematics illustrating the extrapolation scenario.

Multidimensional extrapolation in the context of the PDE method has been described by Aslam [31] and subsequently 
used in application to the Stefan problem [32,33]. Despite its straightforward adaptivity to multidimensional extrapolation, 
the FMM has not yet been analyzed in detail for higher order extrapolations, which may be attributed to the aforementioned 
concerns regarding rate of convergence and accuracy. The goal of this study is to present a quantitative comparison between 
the PDE-based and FMM-based extrapolation methods, analyzing both the speed and accuracy of each method.

This paper is organized as follows: in the next section, the mathematical framework for multidimensional extrapolation 
is given, including a derivation of the expected order of accuracy, followed by discussions of both PDE and FMM solution 
approaches in Sections 2.3 and 2.4, respectively. Provided in Section 3 is a discussion of the PDE and FMM implementations 
used in this work. The PDE methodology is similar to the implementation of Aslam [31]. Parallel implementation of the 
FMM procedure for level set re-initialization and subsequent data extrapolation is provided in Appendix A and Appendix B, 
respectively. Section 4 presents multidimensional extrapolation results for the canonical test case used by Aslam [31]. Finally, 
this test case is also adapted to an additional shape in Section 5, revealing some subtleties of the method that are worth 
consideration. From these tests it is shown that the FMM provides a computationally efficient means of performing second 
order accurate extrapolation.

2. Mathematical formulation

2.1. Problem description

Consider a domain Ω that contains a continuous surface Γ , such that it divides Ω into an inner subdomain Ωin and an 
outer subdomain Ωout, as illustrated in Fig. 1(a). Then consider the function g(x) to be extrapolated, defined for all x ∈ Ω . 
To simplify the discussion, the function g(x) is considered here to be a scalar without loss of generality. There exists a signed 
distance level set φ(x) = ±∥x − xΓ ∥, where xΓ is the location on Γ that provides the minimum Euclidean distance from 
location x, as shown in Fig. 1(b). The sign of φ is negative in the domain Ωin and positive in the domain Ωout. The level set 
φ is an auxiliary function to our discussion and, given φ, a smooth field of normal vectors is obtained from

n = ∇φ

∥∇φ∥ , (1)

oriented outward from Ωin.
For any point x ∈ Ωout, the function h(x) is defined as the mth order Taylor Series expansion of g from xΓ , i.e.,

h(x) =
m∑

k=0

φk

k!
∂k g

∂φk

∣∣∣∣
xΓ

. (2)

Note that the x dependence of φ has been dropped for simplicity. We will build our extrapolation of g in the form of the 
function f (x), written as

f (x) =
{

g(x) if x ∈ Ωin,
h(x) if x ∈ Ωout.

(3)

It is clear that f (x) should be Cm continuous across Γ .

2.2. Expected accuracy

When obtaining f for a set of numerical data, it is clear from Eqs. (2) and (3) that the resulting accuracy of the extrap-
olated f field in Ωout will depend on both m and the accuracy of the discrete representation of ∂k g/∂φk|xΓ . Assuming that 
n is horizontal and xΓ = 0 such that the distance from Γ is described by the variable x, we introduce a discrete upwind 
operator U that approximates the first derivative of a function with order of accuracy N such that

g′
i = U(gi) + O

(
%xN)

, (4)
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where gi = g(xi) is the value of g at location xi , %x is the characteristic mesh spacing, and the prime is used to denote 
∂/∂x. Recursively applying the operator U to higher derivatives of g leads to

g(k+1)
i = U

(
g(k)

i

)
+ O

(
%xN−k), (5)

where the superscript (k) is used to denote the order of the derivative in x.
Eqs. (2) and (3) provide f (xi) as a Taylor Series expansion about x = 0 with m + 1 terms, such that

f (xi) = h(xi) + O
(
xm+1

i

)
. (6)

The kth derivative g(k)(x)|x=0 necessary to obtain h(xi) via Eq. (2) is written as

g(k)
0 = U

(
g(k−1)

0

)
+ O

(
%xN−(k−1)

)
, (7)

where Eq. (5) has been used. Combining Eqs. (2), (6), and (7) leads to

f (xi) =
m∑

k=0

xk
i

k! U
(

g(k−1)
0

)
+ O

(
xk

i %xN−k+1) + O
(
xm+1

i

)
. (8)

We rewrite Eq. (8) as

f (xi) = h̃(xi) + O
(
xk

i %xN−k+1) + O
(
xm+1

i

)
, (9)

where ̃h(xi) is the discrete approximation to h(xi). Eq. (9) indicates that the rate of convergence will be controlled by either 
O(xk

i %xN−k+1) or O(xm+1
i ). If xi ∼ %x, which applies when extrapolating to a narrow band around Γ , Eq. (9) becomes

f (xi) = h̃(xi) + O
(
%xmin(N+1,m+1)

)
. (10)

This dictates that the convergence rate Rband of the f field within a narrow band around Γ is given by

Rband = min(N + 1,m + 1). (11)

Obtaining f in the subregion Ωout amounts to solving a boundary value problem in Ωout based on boundary conditions 
on Γ . This can be accomplished in different ways, and this work compares the PDE-based extrapolation of Aslam [31] with 
the FMM-based extrapolation developed herein. The mathematical formalism for the two approaches is discussed below, 
followed by a discussion of the implemented equations when performing this procedure on numerical data.

2.3. Partial differential extrapolation

As done by Aslam [31], one way to obtain f is to solve a PDE in the subregion Ωout to a steady state solution that has 
the desired properties. We outline the procedure here for completeness, first for constant, or 0th order, extrapolation, i.e., 
extrapolation that results in a field f that is C0 continuous across Γ . Next, Aslam’s procedure [31] for mth order extrapo-
lation that results in a field f that is Cm continuous across Γ is described. The descriptors “order” or “high order” when ref-
erencing the extrapolation refer to the order of m, and should not be confused with the order of accuracy of the spatial dis-
cretization used when discretizing the PDE in later sections.

2.3.1. Constant extrapolation
The f field can be constructed within Ωout by solving in pseudo-time τ the Hamilton–Jacobi equation

∂ f
∂τ

+ H(∇ f ) = 0, (12)

where the Hamiltonian H is a function of the gradient of f . For constant extrapolation, H(∇ f ) = ∇ f · n, leading to

∂ f
∂τ

+ ∇ f · n = 0. (13)

The boundary of Ωout is Γ , and the boundary and initial conditions for this PDE are

f (τ , x) = g(x) for τ > 0, ∀x ∈ Γ

f (0, x) = 0, ∀x ∈ Ωout. (14)

Note that the initial condition is arbitrary since the PDE is solved to steady state. The resulting f field within Ωout will be 
constant along the direction of n, and f (x) for all x ∈ Ω will be given by Eq. (3) with m = 0.
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2.3.2. Higher order extrapolation
Consider again Eq. (13), but replace the quantity f with fn = ∂ f /∂n to get

∂ fn

∂τ
+ ∇ fn · n = 0, (15)

subject to the new conditions

fn(τ , x) = ∂ g
∂n

∣∣∣∣
Γ

for τ > 0, ∀x ∈ Γ

fn(0, x) = 0, ∀x ∈ Ωout. (16)

After extrapolating fn to Ωout by solving Eq. (15) to steady state, we then solve

∂ f
∂τ

+ ∇ f · n = fn (17)

to steady state, subject to the conditions in Eq. (14). Having performed the additional extrapolation of fn , the resulting f
field within Ωout will be such that ∂ f /∂n is constant along the direction of n, and f (x) for all x ∈ Ω will be given by Eq. (3)
with m = 1. Naturally, one could construct a field f such that fnn = ∂2 f /∂n2 is constant along n by first extrapolating fnn
with a zero right-hand side, followed by extrapolation of fn with fnn as the right-hand side, and so on.

2.4. Fast marching extrapolation

An alternative way to construct the field f rather than converging a PDE to steady state is to directly solve the static 
Hamilton–Jacobi equation

∇ f · ∇φ = 0 (18)

using an FMM. Indeed, if f represents the normal velocity of the interface Γ , then this equation is the basis for the well 
known velocity extension method [28,34,35] used in level set methods. The FMM is a numerical procedure, but its mathe-
matical formalism that parallels the PDE approach is provided for consistency.

Recalling that n = ∇φ/∥∇φ∥, Eq. (18) is written as

∇ f · n = 0, (19)

which is the static form of Eq. (13). This equation is a boundary value problem subject to the boundary condition in Eq. (14), 
namely f (x) = g(x) ∀x ∈ Γ . Using an FMM to solve Eq. (19) in the region Ωout subject to this boundary condition results in 
a field f within Ωout that is constant along n.

The fast marching solution of the static equation yields the same result (subject to different numerical errors) as PDE-
based extrapolation, but without the cost of converging the time-dependent PDE to steady state. This approach is extended 
to higher order extrapolations in the same manner as the PDE approach, the difference being that the FMM is used to solve 
the successive Hamilton–Jacobi equations in their static form.

3. Numerical formulation

3.1. PDE-based extrapolation

Following the framework of Aslam [31], we introduce a Heaviside function H0(x) to account for the Dirichlet boundary 
condition on Γ when performing constant extrapolation numerically, defined as

H0(x) =
{

0 if x ∈ Ωout,
1 otherwise.

(20)

Thus, for constant PDE-based extrapolation, f is initialized as equal to the function g in Ωin, and the steady-state solution of

∂ f
∂τ

+
(
1 − H0(x)

)
∇ f · n = 0 (21)

provides the extrapolated values f = h in the region Ωout, leaving the values f = g in Ωin unaltered. The resulting f field 
is constant along n within Ωout and C0 continuous across Γ .

Extrapolations with m > 0 require the computation of ∂q g/∂nq for q = m, m − 1, ..., 1 within Ωin, evaluated with second 
order central differences. As noted by Aslam [31], only points within Ωin can be used in calculating ∂q g/∂nq , so the region 
of points where ∂q g/∂nq can be computed decreases with increasing q. In general, we account for this by creating the 
function

B(x) =
⌊

min
( |x − xΓ |

%x
,
|y − yΓ |

%y
,
|z − zΓ |

%z

)⌋
(22)
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Fig. 2. The Heaviside function Hq defined by Eq. (23) and used in the qth extrapolation step. Cells shaded grey correspond to Hq = 1, and Hq = 0 otherwise. 
The interface Γ is shown by the thick black line.

within a band of cells that contains Γ , which keeps track of the minimum number of cells in a given direction between x
and xΓ . This allows the Heaviside function Hq(x) used in the qth extrapolation step to be succinctly defined as

Hq(x) =
{

0 if B(x) ≤ q,
1 if B(x) > q.

(23)

Fig. 2 shows H0(x), H1(x), H2(x), and H3(x) in the vicinity of Γ for a sample interface. Modifying the Hamiltonian to 
include a source term and utilizing this definition of Hq(x), an mth order PDE-based extrapolation can be achieved by 
solving the m + 1 equations

∂ fq

∂τ
+

(
1 − Hq(x)

)
(∇ fq · n − fq+1) = 0 for q = m,m − 1, ...,0, (24)

where

fq = ∇ fq−1 · n (25)

is the qth order differential of f projected onto the normal direction. Note that fm+1 = 0. The resulting f field will be such 
that ∂m f /∂nm is constant along n within Ωout and Cm continuous across Γ .

Eq. (24) is discretized using second order upwind finite differences, where the upwind direction is the direction of the 
normal vector within each computational cell. The normals themselves are computed with second-order central differences 
from Eq. (1). A second-order Runge–Kutta (RK-2) scheme is used for temporal integration. Parallelization of the PDE approach 
is straightforward and only requires that the values of fq be communicated at interprocessor boundaries between each 
substep of the RK-2 temporal integration and between each qth extrapolation of fq for q = m, m − 1, ..., 0.

3.2. FMM-based extrapolation

The fast marching extrapolation developed in the present work relies on a parallel FMM re-initialization of the signed dis-
tance level set function φ. The re-initialization procedure utilized herein is similar to the description of Herrmann [36], and 
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Fig. 3. Accepted (black circles), close (grey circles), and far (open circles) cells for organization of points for φ re-initialization. Thick black lines separate 
the computational domain into four subdomains DBL, DBR, DTL, and DTR for each processor.

Fig. 4. Example 2D upwind φ calculation. The dashed line shows Γ , and the cell of consideration (i, j) is shaded in grey.

more in-depth discussions of the fast marching method can be found elsewhere [27,37–39]. The basis for φ re-initialization 
and subsequent f extrapolation is given here, while the details of their parallel implementation are provided in Appendix A
and Appendix B, respectively.

3.2.1. Re-initialization of φ
The fast marching method can be used to efficiently solve the Eikonal equation

∥∇φ∥ = 1 (26)

by ordered sweeping in the direction of normal characteristics, as opposed to the time-dependent nature of a Hamilton–
Jacobi approach. The directionality of the FMM comes from an upwind finite difference discretization of ∥∇φ∥, where the 
location of the interface determines the upwind direction. Writing the interface Γ = {x : φ(x) = 0} as Γ = φ−1(0), an iso-
level of φ > 0, denoted as Γt , can be written as Γt = φ−1(t) for some t > 0, where t characterizes the progress of the 
algorithm. Re-initialization of φ amounts to sweeping the front Γt from the interface Γ to the rest of the computational 
domain, as illustrated in Fig. 3. Crucial to the FMM procedure are the three lists A, C , and F , distinguishing each compu-
tational cell (i, j, k) as “accepted”, “close”, and “far”, respectively. These lists are local to each processor and are of dynamic 
size NA , NC , and NF , respectively. Cells for which φi, j,k is set are included in A, as shown in Fig. 3. Cells immediately 
adjacent to any cell in A but not included in A are included in C , and all remaining cells are included in F . Each cell in C
is a candidate to be the closest cell to Γt , i.e., to have the minimum value of φ of all non-accepted cells.

Based on Godunov’s method, upwind finite difference stencils are used to compute φi, j,k within each close cell in C by 
solving the equation

max
(

D−
x φi, j,k,−D+

x φi, j,k,0
)2 + max

(
D−

y φi, j,k,−D+
y φi, j,k,0

)2 + max
(

D−
z φi, j,k,−D+

z φi, j,k,0
)2 − 1 = 0, (27)

where D±
x,y,z are first order upwind finite difference notations, defined as D+

x φi, j,k = (φi+1, j,k − φi, j,k)/%x and D−
y φi, j,k =

(φi, j,k − φi, j−1,k)/%y, for example. Prior to solving Eq. (27) within each cell in C , φ is set to ∞ in any adjacent cell 
not included in A and in all far cells included in F , i.e., Eq. (27) will select only accepted cells for the upwind calculation. 
Solving for the roots of Eq. (27) provides two solutions for φi, j,k . In most cases, one root will be smaller than the neighboring 
values and the other larger. The causal nature of the FMM is maintained by taking the larger of the roots, and this gives the 
proper value of φi, j,k . A two-dimensional example is shown in Fig. 4. The grey cell (i, j) is the close cell at which φi, j is 
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being computed. Based on the location of Γt , the values of neighboring accepted cells φi−1, j and φi, j−1 have already been 
computed and will be used in the calculation of (∇φ)i, j . In this case, Eq. (27) becomes

(
D−

x φi, j
)2 +

(
D−

y φi, j
)2 − 1 = 0, (28)

and keeping the larger of the two roots provides the solution for φi, j .
Once φ has been computed in all close cells, a heap sort is then performed on the list C , which is a balanced binary-tree 

structure that orders C by increasing |φ|. The heap sort will keep the cell with the minimum |φ| value as the C(1) entry 
[21,38] and leads to a theoretical O(N log N) operation count for the serial FMM on a domain of N cells. After being sorted, 
cell C(1) is added to list A and any of its adjacent far neighbors are removed from F and added to C . Eq. (27) is again 
solved for all cells in C by setting φ = ∞ for all adjacent cells not included in A and in all far cells, the heap sort algorithm 
will reorder C , and the process is repeated. The entire procedure is performed separately for regions corresponding to φ < 0
and φ ≥ 0. A detailed discussion of our parallel implementation of φ re-initialization is provided in Appendix A.

3.2.2. Redistribution of f
Having solved ∥∇φ∥ = 1 via Eq. (27), the re-initialized φ field can be used to solve the m + 1 redistribution equations

∇ fq · ∇φ = fq+1 for q = m,m − 1, ...,0, (29)

which are the static form of Eq. (24) implemented for PDE-based extrapolation. Note that the form of Eq. (29) does not 
account for the boundary cells that are designated by Hq(x) = 1; in practice, cells with Hq,i, j,k = 1 are skipped during f
redistribution (see Appendix B for details). One iteration of Eq. (29) is approximated by

S−
x
(

D−
x φi, j,k · D−

x fq,i, j,k
)
+ S+

x
(

D+
x φi, j,k · D+

x fq,i, j,k
)

+ S−
y
(

D−
y φi, j,k · D−

y fq,i, j,k
)
+ S+

y
(

D+
y φi, j,k · D+

y fq,i, j,k
)

+ S−
z
(

D−
z φi, j,k · D−

z fq,i, j,k
)
+ S+

z
(

D+
z φi, j,k · D+

z fq,i, j,k
)
= fq+1,i, j,k, (30)

where the switches S±
x are defined as

S+
x =

{
1 if max(D−

x φi, j,k,−D+
x φi, j,k,0) = −D+

x φi, j,k,
0 otherwise

S−
x =

{
1 if max(D−

x φi, j,k,−D+
x φi, j,k,0) = D−

x φi, j,k,
0 otherwise.

(31)

The switches S±
y and S±

z are defined accordingly, and these switches ensure that only the adjacent cells with a smaller |φ|
value used in solving Eq. (27) are again used to solve the redistribution equation. In terms of the example in Fig. 4, Eq. (30)
becomes

fq,i, j

(
(φi, j − φi−1, j)

%x2 + (φi, j − φi, j−1)

%y2

)
−

(
fq,i−1, j

(φi, j − φi−1, j)

%x2 + fq,i, j−1
(φi, j − φi, j−1)

%y2

)
= fq+1,i, j. (32)

All values of φ are known, fq,i−1, j and fq,i, j−1 have already been computed, and fq+1,i, j was computed in the previous 
q +1 extrapolation step, so fq,i, j is readily available from Eq. (32). A significant benefit of this approach is that if the upwind 
stencils used to re-initialize φ are stored, the computational cost of successive redistributions is minimal.

An important detail that warrants special attention arises when performing high order extrapolations: the FMM prop-
agates information in the normal direction starting from Γ , while FMM data extrapolation propagates information in the 
normal direction starting from the region where Hq = 1. Thus, extrapolations with m > 0 require propagating information 
in the direction opposite the normal in a few cells near the interface (see Fig. 2). Numerically this means that within these 
few cells near Γ , the stencils for re-initializing φ are not equivalent to the stencils for extrapolating fq . The way that we 
account for this and the details of the parallel implementation of f redistribution are provided in Appendix B.

4. Comparison between FMM and PDE extrapolation

In this section, the predicted rates of convergence of the extrapolations are verified, and the error level and computa-
tional cost of the PDE and FMM procedures are compared. Using the test case of Aslam [31], convergence over the entire 
domain as well as in a narrow band is considered. The two-dimensional computational domain is defined by x ∈ [−π , +π ]
and y ∈ [−π , +π ], and the level set is given as

φ = r − R, (33)

where r =
√

x2 + y2. The radius of the circle is set to be R = 2. The scalar field g(x, y) is set to be

g(x, y) = cos(x) sin(y). (34)

The simple form of φ in Eq. (33) allows to solve analytically ∇ fq · n = fq+1 for q = m, m − 1, ..., 0. The solutions for m =
0, 1, 2, 3 are shown in Fig. 5. For the PDE and FMM extrapolations, second order central differences are used to compute 
normal vectors from Eq. (1) based on the prescribed φ in Eq. (33).



400 J.O. McCaslin et al. / Journal of Computational Physics 274 (2014) 393–412

Fig. 5. Exact solution to the test case described by Eqs. (33) and (34). φ = 0 (thick line), contours of f in increments of 0.127 (thin lines).

4.1. Global convergence

Table 1 gives the ratio of the FMM error Lp
F to the PDE error Lp

P for p = 1, 2, and ∞. The PDE approach proves to be 
slightly more accurate for all cases except for cubic, due to the first order nature of the upwind stencils used in the FMM. 
The rates of convergence under mesh refinement Rp

F,M are also provided, observing a range of convergence near first order 
for both PDE and FMM. Overall, both FMM and PDE appear to be performing very similarly for this test case.

4.2. Narrow band convergence

In many applications of multidimensional extrapolation, it is only necessary to extend a given quantity into a narrow 
band containing the interface. Performing the same extrapolations into a region 5%x from the interface yields a convergence 
rate Rband that follows the predicted value in Eq. (11). As shown in Figs. 6(a) and 6(b), the first order nature of the FMM 
limits it to second order convergence, and the PDE is limited to third order convergence since it relies on second order 
accurate schemes. For the case of cubic extrapolation with m = 3, the PDE’s O(%x3) error associated with the second order 
upwind discretization will limit the rate of convergence, despite the O(%x4) nature of the m = 3 extrapolation. This is seen 
in Fig. 6(a), which begins to show Rband = 3 for the cubic extrapolation on the 1600 × 1600 and 3200 × 3200 grids.

It is evident from comparison of the L2 values in Figs. 6(a) and 6(b) that the accuracy of the PDE approach relative 
to FMM improves when only a narrow band is considered, as the first order errors associated with the FMM are most 
predominant in the cells immediately adjacent to the interface. This effect could be reduced by utilizing a high-order 
interpolation to initialize the fast marching process, but this is not investigated in this study. Confirmation that first order 
errors are what prevent third order convergence for quadratic FMM extrapolation is given in Fig. 6(c), which shows that the 
PDE behaves identically to the FMM when a first order upwind is used to discretize ∇ f .

4.3. Cost comparison

Tests on meshes of 8002 and smaller were performed on a single Intel Xeon dual 6-core X5670 CPU (12 threads), while 
the larger meshes were run on 8 CPUs (96 threads). For the PDE method, the pseudo-time step %τ was set to %τ = 0.3%x
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Table 1
Error ratios and rates of convergence for FMM and PDE extrapolation from a circle.

%x L1
F/L1

P L2
F/L2

P L∞
F /L∞

P R1
F R1

P R2
F R2

P R∞
F R∞

P

2π/100 4.48 4.35 1.85
2π/200 4.18 4.16 1.89 0.96 0.87 0.99 0.93 0.93 0.96
2π/400 4.77 4.24 1.64 1.07 1.26 1.08 1.11 1.05 0.85
2π/800 4.84 4.22 1.87 1.05 1.07 1.02 1.01 0.88 1.07

m = 0

2π/100 1.64 1.69 1.47
2π/200 1.61 1.66 1.16 1.10 1.07 1.09 1.06 1.00 0.66
2π/400 1.60 1.65 1.38 1.08 1.07 1.05 1.04 0.75 1.00
2π/800 1.61 1.66 1.17 1.06 1.06 1.06 1.07 1.07 0.83

m = 1

2π/100 1.44 1.37 1.26
2π/200 1.42 1.37 1.26 1.04 1.03 1.03 1.02 0.98 0.98
2π/400 1.44 1.40 1.43 1.07 1.08 1.07 1.10 1.07 1.25
2π/800 1.45 1.41 1.34 1.04 1.05 1.05 1.07 1.12 1.02

m = 2

2π/100 0.95 0.94 0.92
2π/200 0.86 0.83 0.77 1.42 1.27 1.45 1.27 1.46 1.21
2π/400 0.85 0.78 0.71 1.20 1.18 1.26 1.18 1.34 1.23
2π/800 0.85 0.77 0.66 1.12 1.11 1.16 1.14 1.37 1.26

m = 3

Fig. 6. Convergence in a band of points 5%x from the interface. Constant (•), linear (!), quadratic ("), cubic (#), 1st order (upper dashed line), 2nd order 
(dash-dotted line), 3rd order (dotted line), 4th order (lower dashed line).
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Table 2
Timing ratios for extrapolation to the full domain.

%x TPDE/TFMM

m = 0 m = 1 m = 2 m = 3

2π/100 10.09 15.58 17.58 16.61
2π/200 14.61 21.90 26.74 22.23
2π/400 40.04 36.24 59.96 35.25
2π/800 127.49 183.01 181.91 133.37

Table 3
Timing ratios for extrapolation into a band of 5%x.

%x TPDE/TFMM

m = 0 m = 1 m = 2 m = 3

2π/100 8.25 12.77 12.97 10.22
2π/200 6.21 7.97 11.05 9.96
2π/400 4.63 8.13 9.72 8.59
2π/800 5.83 5.65 11.09 8.94
2π/1600 9.98 15.21 17.56 14.03
2π/3200 18.65 33.34 33.51 18.27

Table 4
L2 error ratios for extrapolation into a band of 5%x.

%x L2
FMM/L2

PDE

m = 0 m = 1 m = 2 m = 3

2π/100 2.524 1.3546 3.2772 11.9886
2π/200 2.8565 1.3947 4.9682 39.1061
2π/400 2.8723 1.3913 8.8461 144.8141
2π/800 2.5897 1.3797 16.524 358.4859
2π/1600 2.662 1.3623 32.095 684.3938
2π/3200 2.5489 1.3736 63.349 1110.746

for stability reasons, and the convergence criterion was set to 10−9. The ability of the FMM to extrapolate a data field in 
a single step as opposed to the iterative nature of the Hamilton–Jacobi equation leads to dramatic improvements in com-
putational cost. Table 2 shows the ratio of PDE to FMM time spent in extrapolation to the whole domain, showing factors 
of nearly 200 speed-up for the FMM approach. If instead a narrow band is considered, the improvements shown in Table 3
are significantly more modest. However, even in the best case scenario for the PDE approach, a factor of 4 increase in time 
makes the FMM approach very attractive.

Fig. 7 shows the L2 error as a function of computational cost for both FMM and PDE extrapolations. Fig. 7(a) for the full 
domain shows similar error levels for both methods, while the cost of the FMM is significantly reduced. Results in Fig. 7(b) 
for the narrow band show similar error levels and much lower FMM cost up to linear extrapolation, while the PDE drives 
errors much lower with quadratic and cubic extrapolation at the sake of increased computational cost. When compared to 
a first order upwind PDE approach, Fig. 7(c) shows that the FMM achieves the same level of error at a significantly reduced 
cost, as expected. These results are made more visible through direct comparison between Tables 3 and 4, which shows 
that, up to m = 1, error levels of the two methods are essentially the same, but the cost of the FMM is significantly less. 
We conclude that if error levels ∼10−5 are acceptable, then linear FMM extrapolation is clearly optimal, while lower error 
requirements benefit from quadratic and cubic PDE extrapolation.

It is worth mentioning that for a given problem, the mesh size is usually fixed, due to constraints like the resolution re-
quirements of a fluid flow solver, for example. If second order narrow-band convergence is sufficient for a given application, 
then the FMM should always be used, as it provides the same accuracy as the PDE and is dramatically faster for any given 
mesh. If faster rates of convergence are required, then the PDE should be used, or second order upwind operators can be 
combined with second order interpolants to make the FMM formally second order accurate [21,34]. Note that this would 
increase the complexity of the parallel implementation.

5. Extrapolation from an elliptical shape

In this section, we test a variation of Aslam’s case [31] that reveals subtleties of multidimensional extrapolation and 
addresses questions regarding the directionality of the characteristics for a given problem. Convergence over the entire 
domain as well as in a narrow band is again considered. For this new test case, an alternative way of computing high order 
differentials is proposed that may reduce the error level for high order extrapolations.
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Fig. 7. L2 error as a function of computational cost of extrapolation. Constant (•), linear (!), quadratic ("), cubic (#).

5.1. Normal orientation

In this example the computational domain is the same as for the circle, and the level set is given as φ̃ = r − R , where r
is now defined as r =

√
(x/a)2 + (y/b)2. The radius is R = 2, with a = 1.2 and b = 0.8. The initial scalar field g(x, y) is again 

provided by Eq. (34). It is important to realize that for this elliptic shape, φ̃ is not a true signed distance function. Indeed, 
a field of normals obtained from ñ = ∇φ̃/∥∇φ̃∥ have the property ∇ñ · ñ ≠ 0, which means the normals turn when going 
from one iso-level of φ̃ to the next. This is in contrast to the φ obtained by projecting a point x onto Γ such that ∥x − xΓ ∥
in minimized, which is done via a Newton–Raphson method to a high degree of accuracy to obtain the analytical solutions 
for m = 0, 1, 2, 3 shown in Fig. 8. The difference between normals obtained from the true signed distance function φ and 
those obtained from the elliptic φ̃ is illustrated in Fig. 9. Extrapolations based on φ̃ do not converge, while extrapolations 
based on φ obtained from the projection method show the same behavior as the circle test case. This is evidenced by 
the global convergence in Table 5 that mimics the global results for the circle and the narrow-band convergence shown in 
Fig. 10 that follows Eq. (11).

5.2. High order differential formulation

The turning characteristics of the ellipse for which ∇ñ · ñ ≠ 0 raise to question the computation of high order differentials 
that are the source terms for high order extrapolations. For q ≥ 2 in Eq. (25), there is flexibility in how fq is computed. For 
example, f2 could be computed as

f2 = ∇ f1 · n = ∇(∇ f · n) · n, (35)

which is the approach of Aslam [31]. An alternative is

f2 = nT · ∇(∇ f ) · n, (36)
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Fig. 8. Exact solution to the elliptic test case. φ = 0 (thick line), contours of f in increments of 0.127 (thin lines).

Fig. 9. Normals obtained from n = ∇φ/∥∇φ∥ (thick lines) and from ñ = ∇φ̃/∥∇φ̃∥ (thin lines).

where ∇(∇ f ) is the Hessian of f . Similarly, two possible ways of writing f3 are

f3 = ∇ f2 · n = ∇
(
∇(∇ f · n) · n

)
· n (37)

and

f3 = ∂3 f
∂xi∂x j∂xk

nin jnk, (38)
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Table 5
Error ratios and rates of convergence for FMM and PDE extrapolation. Normals obtained from the analytic φ based on the projection method.

%x L1
F/L1

P L2
F/L2

P L∞
F /L∞

P R1
F R1

P R2
F R2

P R∞
F R∞

P

2π/100 5.07 4.83 2.68
2π/200 6.50 5.95 3.04 1.07 1.43 1.12 1.42 1.08 1.26
2π/400 8.99 8.39 2.25 1.06 1.52 1.04 1.54 1.11 0.68
2π/800 7.89 6.59 1.98 0.98 0.79 1.01 0.66 1.02 0.84

m = 0

2π/100 1.65 1.51 1.34
2π/200 1.68 1.56 1.13 1.15 1.18 1.19 1.23 1.47 1.23
2π/400 1.68 1.56 1.14 1.06 1.06 1.05 1.05 0.85 0.86
2π/800 1.66 1.54 1.16 1.00 0.99 1.00 0.98 0.85 0.87

m = 1

2π/100 1.54 1.42 1.31
2π/200 1.50 1.39 1.30 1.02 0.98 1.01 0.98 0.98 0.98
2π/400 1.49 1.39 1.28 1.04 1.04 1.03 1.03 0.98 0.96
2π/800 1.49 1.38 1.28 1.00 0.99 0.99 0.99 0.99 0.99

m = 2

2π/100 1.22 1.14 0.89
2π/200 1.26 1.16 0.86 1.18 1.23 1.20 1.23 1.31 1.27
2π/400 1.26 1.15 0.80 1.15 1.15 1.17 1.15 1.20 1.09
2π/800 1.26 1.14 0.84 1.05 1.06 1.06 1.05 0.99 1.06

m = 3

Fig. 10. Convergence in a band of points 5%x from the interface. Normals obtained from the analytic φ based on the projection method. Constant (•), linear 
(!), quadratic ("), cubic (#), 1st order (upper dashed line), 2nd order (dash-dotted line), 3rd order (dotted line), 4th order (lower dashed line).

where Einstein’s notation is used in Eq. (38). Upon expanding Eqs. (35) and (37) it is clear that they are only equal to their 
respective counterparts, Eqs. (36) and (38), if ∇n · n = 0. In general, fq can be obtained by computing a qth order tensor 
that is the exact differential of f and projecting onto the normal q times. Consequently, Eqs. (36) and (38) do not involve 
differentiating n, which may be desirable when n is computed numerically and contains some level of error.

Many realistic level set applications rely on normals derived from a φ field obtained from FMM re-initialization [5,7,9,15], 
and it is of interest to test convergence when using such normals. Fig. 11 shows that extrapolation using an FMM-based φ
does not alter the observed convergence as compared to when the exact φ obtained from the projection method is used, 
so long as f2 and f3 for quadratic and cubic extrapolation are computed via Eqs. (36) and (38). However, repeated differ-
entiation of n to form the differential as in Eq. (37) does affect the convergence at the cubic level for PDE extrapolation, 
as shown in Fig. 12. We conclude that the generalized tensor-projection method proposed herein for computing high order 
differentials is beneficial.

6. Conclusion

A fast marching framework for multidimensional extrapolation has been provided. Second order FMM extrapolation is 
achieved through the sequential solution of non-homogeneous static Hamilton–Jacobi equations and compared to solutions 
from the pre-existing PDE-based framework [31]. Two numerical examples based on prescribed signed distance level set 
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Fig. 11. Convergence in a band of points 5%x from the interface. Normals obtained from a fast marching solution for φ , differentials computed via Eqs. (36)
and (38). Constant (•), linear (!), quadratic ("), cubic (#), 1st order (upper dashed line), 2nd order (dash-dotted line), 3rd order (dotted line), 4th order 
(lower dashed line).

Fig. 12. Convergence in a band of points 5%x from the interface. Normals obtained from a fast marching solution for φ , differentials computed via Eqs. (35)
and (37). Constant (•), linear (!), quadratic ("), cubic (#), 1st order (upper dashed line), 2nd order (dash-dotted line), 3rd order (dotted line), 4th order 
(lower dashed line).

fields are used to compare the PDE and FMM approaches, the first being extrapolation from a circle used by Aslam [31]. 
Our predicted narrow-band convergence is verified on meshes ranging from 1002 to 32002 points, demonstrating that the 
rate of convergence is controlled by the minimum between the order of the extrapolation itself and the order of accuracy of 
the spatial discretization. Timing analysis shows that the FMM approach offers dramatic computational cost improvements 
compared to the iterative nature of PDE extrapolation. If second order convergence in a narrow band is sufficient for a 
given application, then the FMM should always be used, as it provides the same accuracy as the PDE at a significantly 
reduced cost. Higher rates of convergence will require the use of the PDE method or a modified FMM that has higher 
spatial accuracy. Next, an ellipse is presented, and results suggest that computing high order differentials through a more 
general tensor-projection method is preferred to the method of Aslam, as it eliminates the need to repeatedly differentiate 
the normal vector field. Finally, appendices are provided that give a detailed parallel implementation of the FMM-based 
extrapolation developed in the present work.

Appendix A. Parallel implementation of φ re-initialization

To keep the implementation general, we denote a computational cell as X . To initialize the points in the domain prior to 
the FMM re-initialization process, each processor searches through its computational subdomain D and tags all cells X as 
either close or far, as done in Algorithm 1 in the plus direction, i.e., in regions with φ ≥ 0. Once cells adjacent to the interface 
are added to C and all others added to F , the FMM process can begin. The serial algorithm for φ ≥ 0 performed by each 
processor on its local computational subdomain D is presented in Algorithm 2. This serial algorithm relies on Algorithm 3, 
which determines the orientation of X with respect to its accepted neighbors (or Γ itself, for the case of initialization 
when A is empty). Algorithm 3 then calls Algorithm 4, which computes the minimum φ(X ) based on all possible upwind 
configurations.
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Algorithm 1 Procedure to initialize the close and far lists in subdomain D where φ ≥ 0.
function fmm_close_far(φ, C, F , NC, NF ) ◃ in: φ

◃ out: φ , C, F , NC , NF
NC ← 0 ◃ number of close cells
NF ← 0 ◃ number of far cells
for all X ∈ D : φ(X ) ≥ 0 do ◃ loop over processor subdomain

if X is adjacent to Γ then ◃ determine if cell includes Γ
NC ← NC + 1
C(NC) ← X ◃ if so, add to list of close cells

else
NF ← NF + 1
F(NF ) ← X ◃ if not, add to list of far cells

end if
end for
initialize A to an empty list
call fmm_get_neighbors(φ, A, C) ◃ compute φ(X ) ∀X ∈ C based on Γ

end function

Algorithm 2 Serial FMM re-initialization of φ for a processor on subdomain D.
function serial_fmm_reinit(φ, A, NA) ◃ in: φ

◃ out: φ , A, NA
NA ← 0 ◃ number of accepted cells
call fmm_close_far(φ, C, F , NC, NF ) ◃ initialize the close and far lists
while NC > 0 do ◃ process all remaining close cells

call the heap sort on C ◃ order close cells by increasing φ
X ← C(1) ◃ obtain the cell that is closest to Γt
NA ← NA + 1
A(NA) ← X ◃ add it to the accepted list
delete C(1) ◃ remove it from the close list
NC ← NC − 1
for all X ′ adjacent to X do ◃ loop over cells adjacent to newly accepted cell

if X ′ ∈ F then ◃ is adjacent cell currently tagged as far?
NC ← NC + 1
C(NC) ← X ′ ◃ if so, add to close list
delete F(NF )

NF ← NF − 1 ◃ remove from far list
end if

end for
call fmm_get_neighbors(φ, A, C) ◃ compute φ(X ) ∀X ∈ C based on updated A

end while
end function

Algorithm 3 Procedure to compute φ.
function fmm_get_neighbors(φ, A, C) ◃ in: φ , A, C

◃ out: φ
for all X included in C do ◃ loop through list of close cells

Nstc ← 0 ◃ number of possible neighboring cells
for all X ′ adjacent to X do ◃ loop over cells adjacent to cell of consideration

if X ′ ∈ A then ◃ is neighbor an accepted cell?
Nstc ← Nstc + 1
φstc(Nstc) ← φ(X ′) ◃ if so, store the φ of that neighbor

else if X ′ ∈ Γ then ◃ is neighbor the interface itself? (initialization step)
Nstc ← Nstc + 1
φstc(Nstc) ← 0 ◃ if so, store the φ of that neighbor as 0

end if
end for
call fmm_upwind_calc(φ, S, Nstc, φstc) ◃ compute φ(X ) based on Nstc and φstc

end for
end function

Algorithm 4 tests all possible upwind stencils based on Nstc accepted neighbors, followed by the subsequent selection of 
φ based on the stencil that provides the minimum φ value. This is because when interface topology is complex, cells can lie 
between multiple fronts. This becomes rather detailed in 3D, since as many as 6 adjacent neighbors are possible. Ultimately, 
the computation can be broken into 1D, 2D, and 3D calculations, as shown in Fig. 13. As in Fig. 13(a), a 1D calculation 
simply computes φ(X ) by adding the cell size % of the computational mesh to the φ value of the single adjacent accepted 
cell. A 2D calculation amounts to computing the normal distance from X to the linear reconstruction of Γt by 2 in-plane 
adjacent accepted cells, as shown in Fig. 13(b). The third calculation involves computing the normal distance from X to the 
planar reconstruction of Γt from 3 adjacent accepted cells, as shown in Fig. 13(c).
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Algorithm 4 Procedure to determine the FMM upwind stencil and resulting φ.
function fmm_upwind_calc(φ, S, Nstc, φstc ) ◃ in: Nstc , φstc

◃ out: φ , S
if Nstc == 0 then

φ(X ) already set
else if Nstc == 1 then

φ(X ) ← φstc(1) + % ◃ 1D calculation
else if Nstc == 2 then

if neighbors lie on opposite sides of X then
φ(X ) ← min(φstc(1) + %, φstc(2) + %) ◃ minimum of 2 1D calculations

else
φ(X ) ← normal distance to linear reconstruction of Γt from φstc(1 : 2) ◃ 2D calculation

end if
else if Nstc == 3 then

if any two neighbors lie on opposite sides of X then
compute all possible linear recons. of Γt from pairs of neighbors
φ(X ) ← minimum normal distance to possible Γt ’s ◃ 2D calculations

else
φ(X ) ← normal distance to planar recons. of Γt from φstc(1 : 3) ◃ 3D calculation

end if
else if Nstc == 4 then

if both sets of neighbors lie on opposite sides of X then
compute all possible linear recons. of Γt from pairs of neighbors
φ(X ) ← minimum normal distance to possible Γt ’s ◃ 2D calculations

else
compute all possible planar recons. of Γt from triads of neighbors
φ(X ) ← minimum normal distance to possible Γt ’s ◃ 3D calculations

end if
else if Nstc == 5 then

compute 4 possible planar recons. of Γt from triads of neighbors
φ(X ) ← minimum normal distance to possible Γt ’s ◃ 3D calculations

else if Nstc == 6 then
compute 8 possible planar recons. of Γt from triads of neighbors
φ(X ) ← minimum normal distance to possible Γt ’s ◃ 3D calculations

end if
S(X ) ← stencil for Nstc neighbors used ◃ remember stencil used for upwind (see Appendix B)

end function

Fig. 13. Examples of the 1D, 2D, and 3D calculations involved in the upwind FMM calculation of φ. Cell X where φ is being computed is indicated by dark 
lines, and the grey plane indicates Γt . Adjacent cells are shown as A (accepted), C (close), or F (far).

The intricacy of the parallel FMM is that when a computational cell X is determined to have the minimum local φ of all 
candidate cells, i.e., X = C(1), this does not mean that X has the minimum φ of all candidate cells globally. Consequently, 
processors are required to communicate accepted cells at interprocessor boundaries to the ghost cells of neighboring pro-
cessors. If a received φ value is smaller than a previously accepted φ, then a rollback step is required to ensure that the 
final global list of accepted cells increases monotonically. Utilizing all algorithms required for the serial FMM along with the 
parallel rollback step in Algorithm 5, the parallel FMM procedure is provided in Algorithm 6.
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Algorithm 5 Parallel rollback of cells in A.
function parallel_rollback(φ, A, C, F , NA, NC, NF ) ◃ in: φ , A, C, F , NA , NC , NF

◃ out: φ , A, C, F , NA , NC , NF
while messages are available for receipt do

receive X and φnbrs(X ) ◃ receive all φ values from neighbor procs
if φnbrs(X ) < φ(X ) then ◃ if received value is smaller than local value, might need to roll back

while NA > 0 do ◃ if less than currently accepted value, roll back
X ′ ← A(NA) ◃ access most recently accepted cell
if φ(X ′) < φnbrs(X ) then ◃ is most recently accepted value smaller than received value?

if X ′ is not a ghost cell, exit ◃ if so, exit loop and check for another message
end if
delete A(NA) ◃ if not, remove X ′ from A
NA ← NA − 1
NC ← NC + 1
C(NC) ← X ′ ◃ and add it to C
call the heap sort on C ◃ re-sort the heap

end while
if X ∈ C then ◃ is cell in question already tagged as close?

φ(X ) ← φnbrs(X ) ◃ if so, overwrite local value with received value
call the heap sort on C ◃ re-sort the heap

else if X ∈ F then ◃ is cell in question currently tagged as far?
φ(X ) ← φnbrs(X ) ◃ if so, overwrite the local value
delete F(NF ) ◃ remove it from the far list
NF ← NF − 1
NC ← NC + 1
C(NC) ← X ◃ add it to the close list
call the heap sort on C ◃ re-sort the heap

end if
end if

end while
end function

Algorithm 6 Parallel FMM re-initialization of φ.
function parallel_fmm_reinit(φ, A, NA) ◃ in: φ

◃ out: φ , A, NA
NA ← 0 ◃ number of accepted cells
call fmm_close_far(φ, C, F , NC, NF ) ◃ initialize the close and far lists
Nall

C ← parallel sum of NC ◃ sum close cells over all processors
while Nall

C > 0 do ◃ begin the global loop
while NC > 0 do ◃ begin the local loop

if message(s) is waiting for receipt then ◃ have neighbors sent messages?
call parallel_rollback(φ, A, C, F , NA, NC, NF ) ◃ if so, modify lists if necessary

end if
call the heap sort on C ◃ order close cells by increasing φ
X ← C(1) ◃ obtain the cell that is closest to Γt
NA ← NA + 1
A(NA) ← X ◃ add it to the accepted list
delete C(1) ◃ remove it from close list
NC ← NC − 1
if X is at an interprocessor boundary then

send φ(X ) to buffer ◃ communicate newly accepted cell to neighbor ghost cells
end if
for all X ′ adjacent to X do ◃ loop over cells adjacent to newly accepted cell

if X ′ ∈ F then ◃ is adjacent cell currently tagged as far?
NC ← NC + 1
C(NC) ← X ′ ◃ if so, add to close list
delete F(NF )

NF ← NF − 1 ◃ remove from far list
end if

end for
call fmm_get_neighbors(φ, A, C) ◃ compute φ(X ) ∀X ∈ C based on updated A

end while
Nall

C ← parallel sum of NC ◃ sum close cells over all processors
end while

end function

Appendix B. Parallel implementation of f redistribution

In performing high order extrapolations, Hq(x) = 1 defines the region where fq can be computed, as explained in Sec-
tion 3.1. Thus, discretely populating Ωout through an mth order extrapolation requires populating cells that lie on both sides 
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Fig. 14. Combining each processor’s ordered list maps in the plus and minus directions into one list map for the extension routine. The domain is divided 
among three processors P left , Pmid, and P right .

Fig. 15. An example domain divided among three processors P left , Pmid, and P right , demonstrating the merging of A± and M± into L and M.

of Γ if m > 0. Since the boundary domain for fq decreases with increasing q and the outer domain increases, it is conven-
ient to introduce Ωq

out to represent the outer region that must be populated for a given q, defined as

Ω
q
out =

{
x ∈ (Ωin ∪ Ωout) : Hq(x) = 0

}
. (B.1)

Non-shaded cells in Fig. 2 comprise Ωq
out.

Recall that after performing the FMM to re-distance φ in the previous section, all cells are eventually added to the list 
of accepted cells A, which is an ordered list map local to each processor that corresponds to the order in which cells are 
computed during the FMM. This is done in both the plus and minus directions from the interface, because the FMM prop-
agates information from xΓ outwards. The plus and minus lists generated during re-initialization in both directions are 
referred to as A+ and A− , respectively. The minus list ranges from max(φ) to min(φ) in the region where φ ≤ 0, and the 
plus list ranges from min(φ) to max(φ) in the region where φ ≥ 0, as indicated in Fig. 14(a). The local lists A− and A+ are 
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Algorithm 7 Store S based on upwind φ calculation.
function store_stencil(φ, L, M, S+φ , S−φ ) ◃ in: φ , L, M

◃ out: S+φ , S−φ

for n = 1 → N do
X ← L(n)

N+ ← 0 ◃ number of neighbors to compute ∥∇φ∥+
X

N− ← 0 ◃ number of neighbors to compute ∥∇φ∥−
X

for all X ′ adjacent to X do ◃ loop through all adjacent cells
if M(X ′) < M(X ) and

φ(X ′) < φ(X ) then ◃ ensure causality in plus direction
N+ ← N+ + 1 ◃ store the neighbor
φ+(N+) ← φ(X ′) ◃ store φ value of neighbor

else if M(X ′) > M(X ) and
φ(X ′) > φ(X ) then ◃ ensure causality in minus direction

N− ← N− + 1 ◃ store the neighbor
φ−(N−) ← −φ(X ′) ◃ store −φ value of neighbor

end if
end for
call fmm_upwind_calc(φ, S+φ , N+, φ+) ◃ obtain stencil for ∥∇φ∥+φ

X = 1
call fmm_upwind_calc(φ, S−φ , N−, φ−) ◃ obtain stencil for ∥∇φ∥−φ

X = 1
end for

end function

Algorithm 8 Extrapolation of fq in the plus direction.
function plus_extrap(φ, fq+1, Hq, fq ) ◃ in: φ , Hq , fq+1

◃ out: Hq , fq
for n = 1 → N do

X ← L(n)

if Hq(X ) == 1 then
cycle ◃ cell X already updated or /∈ Ω

q
out

end if
N+ ← 0 ◃ number of neighbors to compute ∥∇φ∥+

X
for all X ′ adjacent to X for which S+φ(X ) == 1 do ◃ stored in Algorithm 7

while Hq(X ′) == 0 do ◃ does stencil point belong to different processor?
wait to receive fq(X ′) ◃ if so, wait to receive fq from neighbor
Hq(X ′) ← 1 ◃ once fq is received, mark stencil point as ready for use

end while
N+ ← N+ + 1
φ+(N+) ← φ(X ′) ◃ store φ value at stencil point
f +
q (N+) ← fq(X ′) ◃ store fq value at stencil point

end for
compute fq(X ) from N+ , φ+(1 : N+), f +

q (1 : N+), fq+1(X ) ◃ update fq (Eq. (30))
Hq(X ) ← 1 ◃ mark cell as updated
if X is at an interprocessor boundary then

send fq(X ) to buffer ◃ communicate updated fq to neighbor processors
end if

end for
end function

combined into a single local list map L that is ordered from min(φ) to max(φ) on all processor domains, as indicated in 
Fig. 14(b). For N cells stored in L, the location in computational space X of any cell n ∈ {1, 2, ..., N} can be accessed via

X = L(n). (B.2)

Similarly, the order n for any cell at location X can be obtained from the spatial function M through

n = M(X ). (B.3)

Fig. 15(a) shows an example domain divided among three processors, demonstrating M+ and M− on each processor prior 
to merging them into a single M, which is shown in Fig. 15(b).

Once L is created, the local stencils S±φ(X ) used for extrapolation are obtained. The stencil S+φ contains the entire set 
of switches S±

x,y,z (defined in Section 3.2.2) for extrapolating in the direction of increasing values of φ, i.e., S+φ determines 
which accepted neighbors should be used. The stencil S−φ contains the same information for extrapolation toward decreas-
ing φ values. If, for example, S+φ(X ) contains the neighbor to the left and the cell to the left of cell X is a ghost cell, 
then the processor containing cell X must wait until the ghost cell is updated and communicated by the processor that 
controls it before it can be used to compute fq(X ). An example of such a scenario is shown in Fig. 15(b). The stencils S±φ

are stored in Algorithm 7 based on the upwind stencil for cell X that solves ∥∇φ∥X = 1, according to the causal nature now 
determined by L, M, and φ. This is an important distinction, as it allows us to perform extrapolations with m > 0 that require 
propagating information in a direction opposite to the interfacial normal (see the end of Section 3.2.2).
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After the stencils S±φ are stored, fq can be extrapolated as in Algorithm 8, which outlines the procedure in the direction 
of increasing φ. Note that the flag function Hq(X ) which denotes boundary cells is updated from 0 to 1 whenever fq(X )
is updated. Extrapolation in the direction of decreasing φ follows the same algorithm, but the outermost loop index n goes 
from N → 1 rather than from 1 → N , and the neighbors X ′ are determined by S−φ rather than S+φ .
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